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A numerical solution method is outlined for solving Maxwell’s wave equation in 
parabolic approximation, which is of importance in nonlinear optics. The method is based 
on cubic splines which guarantee continuity of first and second derivatives. In practice 
the method has proven to be both accurate and flexible. 

Since the discovery of the laser a wide range of nonlinear optical effects has 
been observed experimentally and studied theoretically. One class of these effects 
results from the dependence of the refractive index of a medium on the intensity 
of the laser beam propagating through it. This dependence can result in either 
self-focusing [l-3] or self-defocusing [4, 51 of the beam, depending on whether 
the medium refractive index is an increasing or a decreasing function of beam 
intensity. The phenomenon of self-focusing has taken on great practical significance 
since the discovery that glass exhibits self-focusing at sufficiently low intensities 
to place significant limitations on the design of high power lasers utilizing 
neodymium in glass as an amplifying medium. The avoidance of self-focusing 
in these systems thus defines an important design criterion and makes the theoretical 
study of optical beam propagation in nonlinear media interesting not only from a 
fundamental point of view but from a practical engineering point of view as well. 

In this article we describe a practical numerical scheme for solving the equations 
which describe the propagation of circularly symmetric beams in media whose 
dielectric properties can depend either linearly or nonlinearly on the electric 
field. Since the method is applicable to diffraction problems, the linear case can 
also be of considerable practical interest. 

Certainly a variety of numerical difference schemes is available for this task. 
We have selected a technique which utilizes cubic splines, based upon the con- 
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sideration that cubic splines lead to a solution having both continuous first and 
second derivatives and greater global accuracy over the entire interval between 
mesh points than do other schemes having a comparable order of accuracy. In 
any case, this article will serve as a model for the steps required in building a code 
for calculating self focusing in a cylindrical geometry. 

1. BASIC DIFFERENTIAL EQUATIONS 

For a circularly symmetric plane-polarized beam the electric field component 
satisfies the wave equation [ 1, 21 

i a aE --ry 
( Y ar ar ) 

as 
+ a9 

E(J a2E e2 a2(E)2 E 4n av ---__ c2 at2 - - ~ = -__ 
~2 at2 ~2 at2 ’ (1.1) 

where cgs units have been used. In writing Eq. (1.1) it has been assumed that the 
dielectric permitivity E can be expressed as the following nonlinear function of 
the field: 

E = Eg f E2 E2, (1.2) 

and that the effects of absorption or stimulated emission by the medium are 
contained in the polarization source term on the righthand side of Eq. (1.1). 
It is usual in treating Eq. (1.1) to make a slowly varying amplitude approximation 
in which E and P are expressed in the form 

E = &(r, z, t) ei(wt-Lz) + c.c., (1.3a) 
P = p(r, z, t) ei(wt-kz) + c.c., (1.3b) 

where w and k are respectively the frequency and wave number of the optical 
carrier wave, and where the slowly varying complex functions 6 and p satisfy 

(1.4) 

If expressions (1.3) are inserted into Eq. (1 .l) and second derivatives are neglected 
in accordance with the inequalities (1.4), the following equation results: 
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It is customary to replace the nonlinear expression (I .2) by a relation involving 
a nonlinear refractive index 

n, = no + n,(62), (1.6) 

where the bracket implies an average of the square of the field over a single optical 
cycle. The coefficient n2 can be expressed in terms of c2 by 

n2 = &,/$‘“. (1.7) 

It is also more convenient to normalize the field amplitude 8 to a variable 8 
such that 1 8” I2 is a measure of intensity. The magnitude S of the Poynting vector 
is given by 

Hence 

Defining further 

and 

S = (c/4vr)(EH) = +‘c / d j2/25i-. 

6’ = (4%/2?#‘2 8. 

y = 4m2k/e;‘2c 

we may then write Eq. (1.5) as 

0.8) 

(1.9) 

(1.10) 

(1.11) 

(1.12) 

In the simplest case p’ describes the interaction between the electromagnetic field 
and a system of two level atoms. If the line broadening is homogeneous, i.e., if 
the resulting radiation has a Lorentz spectral shape, then p’ is determined by the 
Bloch equations [6] 

ap’/at = T&I’ = -(a/2T,) nb’, (1.13a) 

/~OJ an/at = 2p’b’* + c.c., (1.13b) 

where n is the difference between the number density of atoms in the upper and 
lower states: 

n = N2 - Nl , (1.13c) 
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CJ is the radiation absorption cross section at line center, and T, is the atomic 
dipole dephasing time. The quantity T;;’ is, of course, also equivalent to the 
half-width A42 of the atomic line. If changes in p’ are small during a time of 
the order of T, , the solution of (1.12a) can be written approximately as 

p’ g -(o/2) nG’, (1.14) 

and Eq. (1.12b) takes the familiar rate equation form 

&A &z/at = 2an 1 6’ i2. (1.15) 

Before proceeding with the analysis of Eq. (1.11) it is essential to introduce the 
transformation 

t’ = t - (E’o’“/C) z, 

2’ = z, 

&‘(r, z, t) = &‘(r, z’, t’) = &‘(r, z, t’). 

Equations (1.11) and (1.12) reduce to 

$$ + T;lp’ = - =-& n&‘, 
2 

iiw ; = 2p’a*. 

(1.16) 

(1.17a) 

(1.17b) 

In Eqs. (1.17) the 0 in the time variable t’ refers to the actual time t = (#“/c) - z 
in a stationary frame, or the time of arrival of the front of the pulse at the position z. 
The system of Eqs. (1.17) is solved numerically by advancing all three dependent 
variables one step at a time along the z’-axis for each “time-slice” of the pulse, 
proceeding from the front of the pulse toward the back. The advantage of the 
coordinate transformation (1.16) is that it allows an accurate numerical scheme 
to be developed for which the increments in Z’ and t’ need not be related in any 
special way, such as, for example, AZ’ = c At’/#‘, which is required if Eq. (1.12) 
is integrated along characteristics. [6] Normally, the pulse is divided up into 
equal time intervals, and AZ is selected on the basis of changes in amplitude and 
phase from one axial step to the next. The solution of Eqs. (1.17b) and (1.17~) 
requires no special treatment beyond the requirements that these equations should 
be solved implicitly and self-consistently with Eq. (1.17a). (See for example 
Ref. [6].) No further discussion of the details of solving Eqs. (1.17b) and (1.17~) 
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will be given here, since our main concern will be Eq. (1.17a). It should be empha- 
sized that the coupling between the radiation field and the material medium 
expressed in Eqs. (1.17b) and (1.17~) represents only one possibility of several. 
For example, the medium refractive index may be coupled to the medium density 
through hydrodynamic motion [4, 51, or it may be coupled to the electron number 
density if the medium is a plasma [7]. The nonlinear contribution to the 
refractive index may satisfy a relaxation equation if the medium is a molecular 
Kerr active liquid and the pulse of radiation is sufficiently short [8]. To emphasize 
the generality of the nonlinear contribution to the refractive index, we write 
Eq. (1.17a) in the form 

.a6 i a a& 
z~~TG~r ar ( > __ + x8, (1.18) 

where for convenience and simplicity the primes have been dropped from all 
variables, and the p’ source term has been omitted. In other words, the most 
general time-dependent solution of Eq. (1.11) can be developed as a straight- 
forward generalization of the solution of Eq. (1.18), which will now be the focus 
of our attention. Equation (1.18) is called the nonlinear wave equation in parabolic 
approximation and its equivalence in form to Schriidinger’s time dependent wave 
equation should be obvious. 

2. REQUIREMENTS FOR A PRACTICAL NUMERICAL SOLUTION TO 
THE PARABOLIC WAVE EQUATION 

It goes without saying that in seeking a numerical solution to a given partial 
differential equation one demands an accurate as well as a flexible scheme. In the 
case of Eq. (1.18), accuracy requires among other things, that certain conservation 
conditions be met. 

Writing Eq. (1.18) as 

i BG/az = HG, (2.1) 

where 

H=&g(r&)+x. 
and taking zn+l = zn + Azn, we may upgrade G in z by means of the Crank- 
Nicolson algorithm 

gp+1 = 
1 - iAzni7/2 b” 
1 + iAznR/2 ’ (2.3) 
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which can be expressed in implicit form as 

(1 + i&R/2) d n+l = (1 - iAz”B/2) &“. (2.4) 

Here R is gotten from H by substituting some average value R over the interval 
in question. If R is real, the operator on the right-hand side of Eq. (2.3) is 
Hermitian. The implicit scheme represented by Eq. (2.4) will, as a consequence, 
conserve energy and will be unconditionally stable. While the elements of R are 
real, only very special difference schemes can lead to forms of B which are 
symmetric. This latter requirement is necessary in order to guarantee that the 
eigen-values of B are real. In practice, however, any lack of symmetry in the 
operator B has proven to be unimportant, since implicit schemes of the form (2.4) 
always seem to conserve energy and guarantee unconditional stability. Explicit 
schemes have been widely used for solving Eq. (1.18) [9]. While such schemes 
have the advantage of being relatively easy to program, they are only conditionally 
stable and do not in general conserve beam energy. Thus the implicit scheme (2.4) 
is to be preferred both for reasons of accuracy and flexibility. 

Conservation conditions also impose constraints on the radial discretization 
of Eq. (1.18). From (1.18) we find that conservation of total beam energy requires 

.a R, Iaz 0 s &*c?rdr=$~o~m[c?*$(r~)-8~(r~)]dr 

br ab* Rm - =o, 3 ar o 

where R, defines the extent of the region over which the numerical solution is 
to be determined. The rightmost expression in (2.5) can be made to vanish if 
either of the following boundary conditions is imposed at r = R, 

WL) = 0, (2.6a) 

(a~pr)i&+, = 0. (2.6b) 

The avoidance of spurious boundary effects can be important if one is dealing 
with self-focusing. Experience has shown that the vanishing gradient condition 
tends to offer less of a boundary perturbation on the solution for a given R, 
than does the vanishing field condition (2.6a). One may, however, safely use 
condition (2.6a) with a variable zone scheme if R, can be made sufficiently large. 
For the remainder of the discussion we shall assume the condition (2.6b). 

Let us assume now that the numerical solution is defined at radial points 

581/r6/4-2 
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r = r. , r, ,..., ri ,..., r=R,. Then Eq. (2.5) must be expressed in terms of sums 
of integrals taken over each cell j, or 

(2.7) 

where d has been expressed in terms of amplitude and phase as & = A&+. 
For the right-hand side of (2.7) to vanish both 8 and &Y/jar must be continuous 

at all points r = rj to insure continuity of the phase derivative 

a$/ar = Im b-l d&/dr, 

and any numerical approximation of C$ must reflect these continuity conditions, 
if energy is to be conserved. It is also desirable to maintain continuity of second 
derivatives as well in the numerical solution of Eq. (1.17). The quantity d#dr 
plays a central role in beam propagation, since it determines the direction and 
speed of energy flow. It is reasonable, therefore, to maintain the smoothness 
of this function and to avoid discontinuities in its first derivative in setting up a 
numerical scheme. However, it is simpler to base a numerical scheme for Eq. (1.17) 
on a complex field amplitude that is expressed in terms of its real and imaginary 
parts, rather than in terms of amplitude and phase variables. If it is desired to 
monitor the phase and the phase gradient as the calculation proceeds for diag- 
nostic purposes or to gain insight into the behavior of calculated intensity patterns, 
it will be necessary to calculate these quantities numerically from the solution 
for 6. In order to do this an accurate knowledge of $ and its derivatives at the 
points of the mesh is required. 

A final requirement on the numerical solution method is that it should allow 
the propagating field to be always accurately defined on the given mesh. This may 
pose a problem if the beam energy is caused to either strongly converge or diverge 
due to intensity induced changes in the refractive index. Strong self-focusing in 
the neighborhood of intensity maxima is an example of this. If one knows in 
advance how the beam will focus or spread it should be possible to introduce 
finer zoning in regions where it is required. Thus accuracy and flexibility require 
the capability of introducing a variable mesh spacing. An additional advantage 
of variable mesh spacing is that it enables boundary effects to be reduced to a 
minimum through the use of large zone sizes near the mesh boundary. 

Thus, the various requirements of continuity, flexibility, and accuracy listed 
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above suggest the use of a cubic spline applicable to a grid with variable spacing. 
The Laplacian 

however, contains a singularity at the origin due to the term proportional to l/r. 
It is therefore convenient to construct a spline which is based on a piecewise linear 
Laplacian rather than a second derivative in r which is piecewise linear. If the 
Laplacian is continuous, the second derivative of & will, of course, also be 
continuous. We shall henceforth refer to these splines as cylindrical cubic splines. 

3. DERIVATION OF CYLINDRICAL CUBIC SPLINE EQUATIONS 

If the Laplacian is to be continuous and piecewise linear [lo], it must satisfy 

la a& 

-- J-- 

( ) r i?r ar 
= p (rj - r) + 7 (r - rj-1) (3.1) 

for rjel < r x rj and j = 1,2 ,..., j, , where 

Ii = ri - riHl . 

Integrating Eq. (3.1) once gives 

a& Mj-l 5 ---r ---I-,+$fr(+ 
ar lj ( 2 3 

- 

(3.2) 

+!)+$, (3.3) 

and integrating Eq. (3.3) yields 

d = * r2 (+ - $) + 7 r2 ($ - y) + Cj In r + D3. (3.4) 
3 3 

Finiteness at the origin requires that 

Cl = 0, D, = 8,. (3.5) 

The constants Cj and Dj for the remaining intervals are determined by the 
requirement that 

J?(rJ = &j , j=O,1,2 ,..., j,. (3.6) 
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Applying condition (3.6) to Eq. (3.4) at Y = ri and r = rjwl yields, after a little 
algebra, 

a.= yi2 k-rj _ 
3 

[ ( 4 9 ) rj2-, (y - ?)I/& [In ($J 

f$ = [r: ($- - +) - rj”-, (7 - $-)I/& [In (&)I, 

(3.8a) 

(3.8b) 

(3.8~) 

yij = In rjel/ln (F), (3.8d) 

yZ = In u,/ln e), (3.8e) 

aj’ = 
[ 
(In ripI) rj 2 

( 
rj-1 - -!& 4 

) 
- ln(r,) rj”-, 

( 
9 - y)]/Zi In (y), (3.8f) 

pi = [ln(r,_J rj2 (+ - +) - (In rj) rj”_, (7 - --$-)I/& In (%). (3.8g) 

Equations (3.8) are valid forj = 1, 2 ,...,, jm . Forj = 1 we have, on account of (3.5) 

CL1 = p1 = y1 = 0, (3.9a) 

a ;1 = Kl = r;1 = 0, (3.9b) 

-1. (3.9c) , 
Y21 - - 

Differentiating Eq. (3.7) yields 

$ = &fj [+ + + (+ - y)] + Mjel [++L-(+-$)] 
3 

(3.10) 
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If we demand continuity of ab/ar at r = rj , then the Mj must satisfy 

AjMj+, + BjMj + C&e1 = - + (Gj+1 - 8j) + +j (Sj - &j-l), (3.11) 
3 3 

where Aj , Bj , and Ci are defined by 

Aj = y+fLJ+-+,, (3.12a) 

(3.12~) 

Equation (3.11) enables the Mj to be determined in terms of the 6, values by 
the simple back substitution algorithm for inverting a tri-diagonal matrix [l 11. 
When the Mj are known, Eq. (3.7) in conjunction with Eqs. (3.8) can be used to 
construct the function E(r) with continuous first and second derivatives over the 
entire interval 0 < r < rj . Conversely, the differential Eq. (1.17) after it has 
been differenced with res&t to z can be used to eliminate Mj in terms of b, . 
If the resulting expression is then substituted into Eq. (3.1 l), a difference equation 
in bj in tri-diagonal form results. The solution to the difference equation represents 
a numerical approximation to Eq. (1.17) with continuous first and second 
derivatives. 

One may also develop a similar scheme for solving the diffusion equation 

a* ia 
at=r& 

-- (rD-$-), (3.13) 

where $ represents a density variable, but in this case one must require continuity 
of the “leakage” rate L and the current J, where 

L=f;(rD$), (3.14a) 

The analysis follows as before, and one obtains in place of Eq. (3.11) the following 
relation for a stepwise constant diffusion coefficient 

AjLj+, + BjLj + CjLj-, = - 
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where Djpl12 and Dj3+1,2 are the values of D centered within the intervals 
rjdl < r < rj and rj < r < rjwl , respectively. 

4. DERIVATION OF DIFFJZRENCE FORM FOR WAVE-EQUATION 

Let us write Eq. (1.17) in the form 

i a&j/a2 = (1/2k) M + 28. (4.1) 

For the nonlinear function x one may take its value at the previous z-step or a 
suitable prediction of its value at z = z,” + AZ/~. If Eq. (4.1) is now integrated 
from zmn to zn+l at r = rk , the result is 

gin+1 - ffjn = -(idz/4k)(My+’ i- Mj”) - (idz/2) xj(c?T+’ + Ejn). (4.2) 

Or, solving from M;+l, 

M;+l = xjfFjn+l + Yj ) 

where 

Xj = 2k[(2i/dz) - xj], (4.4a) 

rj = -2k[(2i/dz) + yqj] dj” - Mj”. (4.4b) 

(4.3) 

We now substitute expression (4.3) into Eq. (3.11) obtaining 

Equation (4.5), which has tri-diagonal form, represents the final difference equation 
which c?‘;+’ must satisfy at all interior points and must be solved in conjunction 
with boundary conditions at r = 0 and r = ri . Note that the Mn may be eli- 
minated from Eqs. (4.4b) and (4.5) through th: use of Eq. (3.11), and a saving 
in storage made if desired. 

We will require that aEpr vanish at r = 0 and r = rj, , which requires setting 
expression (3.10) equal to 0 at those points. Due to the presence of the spline 
coefficients M, and Mjel in Eq. (3.10), two more arbitrary conditions are required 
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to eliminate the boundary values of these quantities. There are three obvious 
possibilities, namely, 

(4.6a) 
quadratic condition, 

itIf, = MO = 0; flex condition, (4.6b) 

&p+1 3m = xj,cFj”,” + Yj, ; differential equation condition. 
(4.6~) 

Condition (4.6~) is equivalent to requiring that the differential equation be satisfied 
at the boundary points. All three of these conditions have been tried, and they 
all give satisfactory results. However, the application of condition (4.6~) at the 
origin gives the best results for situations involving focusing along the z-axis. 
Therefore it is the preferred condition at the origin. 

5. CALCULATION OF PHASES, AXIAL SPACE INCREMENTS, AND RELATED MATTERS 

A determination of the phase of 8 can be made in terms of a numerical evaluation 
of the logarithmic derivative of 8: 

(5.1) 

The derivative a&'/ar is evaluated using expression (3.10), and the phase is then 
calculated by numerically evaluating the integral 

$(rj) = loT’ (-$-) dr. (5.2) 

Equation (5.2) assigns the value 0 to the phase at the origin. For evaluating the 
integral the trapezoidal rule is sufficiently accurate. 

One maximizes both calculation efficiency and accuracy by selecting a new value 
for the axial space increment dz for each integration cycle, based on the rate 
of change of both the amplitude and phase of the field. Writing 

d = Aei”, (5.3) 
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one may obtain an expression for the relative change in A and the absolute change 
in 4 by taking 

6A,/A, = Re[(&‘T+’ - L?j’i”)/&j”“], (5.3a) 

S& = Im[(&,“” - &jj”)/&,“+l]. (5.3b) 

The value of dz to be used in the next integration cycle, dzn+l, is obtained from 
the value dz” used in the cycle just completed by means of the relation 

Azn+l/Azn = R/Max(l &4/A 1, / 84 I), (5.4) 

where the Max function is equal to the maximum of its arguments, and where 
the arguments are computed using Eqs. (5.3a) and (5.3b). The input number R 
represents the largest fractional amplitude or absolute phase change which will be 
tolerated. 

Caution should be used in applying condition (5.4) over the entire domain of 
integration, i.e., over all points ri , or else the step size may be controlled by 
boundary effects or erratic variations in the field in regions where the amplitude 
is relatively small and unimportant. Consequently, one should select a region 
where the AZ test is to be applied. In addition, one may wish to apply criterion (5.4) 
only if the local amplitude is greater than some prescribed value. 

6. NUMERICAL EXAMPLES 

Figure 1 shows the evolution of a Fresnel diffraction pattern which leads to 
self-focusing [12]. The initial radial intensity distribution of the beam is Gaussian 
shaped before it is passed through an aperture located at a radius of .5 cm. The 
initial intensity pattern at z = 0 is shown in the bottom left hand corner of Fig. 1 
for the maximum intensity in the pulse. Note that the intensity is allowed to fall 
to 0 exponentially rather than by experiencing a sudden drop. Some form of pulse 
shape tailoring at the aperture boundary is essential since the spline basis functions 
are not suited to discontinuous behavior. An exponential is neither unique nor is it 
the best choice either, although it certainly leads to acceptable results. Care 
must be used in tailoring the intensity distribution beyond the aperture radius 
to avoid undue influence on the diffraction pattern. The propagation path consists 
of three air layers alternating with neodymium doped glass rod amplifiers 23 cm 
in length. Starting with the plot for z = 108 cm, which represents the intensity 
distribution at the entrance to the first rod the plots alternately represent intensity 
distributions at the rod input and output faces. Self-focusing is well advanced 
at 207 cm, which is 15 cm into the final rod, in agreement with experimental 
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FIG. 1. Evolution of Fresnel and self-focusing pattern for laser amplifier system consisting 
of rods and air gaps. Aperture is placed at z = 0, truncating Gaussian shaped beam. Beginning 
with z = 108 cm, each pair of curves indicates intensity distributions at the entrance and exit 
faces of a rod amplifier. Graph for z = 207 cm indicates self-focusing in final rod where damage 
was experimentally observed. Central maximum is off scale. Dotted vertical lines in pattern for 
z = 207 cm indicate position of fringes actually observed in damage pattern [12]. 

observations of damage to the glass rod. The damage takes the form of a Fresnel 
ring pattern at the output face of the final rod. Dotted lines in Fig. 1 indicate the 
position of the experimentally observed rings. The calculation was carried out 
with 120 equally spaced zones within the illuminated area of the aperture, i.e., 
between r = 0 and r = .5 cm; 30 zones increasing in size completed the domain 
of integration which extended to r = 1 .O cm. The problem was run with a constant 
AZ-step in the air that corresponded to the condition AZ = 2k(~lr)~, where dr 
is the constant zone size referred to above. 

Figures 2 and 3 show the results of focusing a beam having a Gaussian intensity 
profile with a 15 cm focal length lens. The initial field amplitude is given by 

a(r, 0) = E, exp[--r2/2az + ikr2/2z,], (5.11) 

where u is the I/e intensity radius. The parabolic phase front causes the beam 
to focus at a position z = z, . The solution to Eq. (1.18) with R = 0 and (5.11) 
as an initial condition can be represented analytically [13] and results in an 
amplitude distribution which always remains Gaussian. However, this problem 
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FIG. 2. Calculated intensity distributions as functions of radius for Gaussian shaped beam. 
Initial l/e intensity radius is 0.25 cm, wavelength is 10.6 ~WZ, and focal length of lens is 15 cm. 
(a) Initial intensity distribution. (b) Intensity distribution in focal plane. Only 14 points represent 
field within l/e intensity radius. (c) Intensity distribution at one focal length beyond focal plane. 

is an excellent test of the numerical method, since any disturbance of the phase 
front will make it impossible to carry the solution through the focal plane at 
z = z, . In particular, phase variations with z are rapid in the neighborhood 
of the focal plane, requiring suitably small values of .4z if the wave is to remain 
intact after passing through the focus. The use of an adaptive integration step 
as prescribed by Eq. (5.4) clearly removes any difficulty in advancing the solution 
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in the focal region. The solution depicted in Figs. 2 and 3 was obtained using 1000 
equally spaced radial points and allowing a 0.05 fractional change in amplitude 
and the same absolute change in phase per cycle [14]. The initial l/e intensity 
radius was 0.25 cm and the wavelength was 1.06 x 1O-3 cm. The initial value 
of AZ was taken to be 0.2 cm. The self-adjusted value of LIZ near the focus was 
.02 cm. The number of cycles required to integrate to a distance z = 22, = 30 cm 

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 

Radius (m) 

Radius (m) 

Radius (nun) 

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 

Radius (m) 

FIG. 3. Phase distributions as functions of radius for focused Gaussian beam described in 
Fig. 2. (a) Initial phase at z = 0. (b) Phase in focal plane, indicating stationarity over portion of 
beam where most of energy is located. (c) Phase 1 cm beyond focal plane. Curvature has reversed 
indicating a diverging beam. (d) Phase at one focal length beyond focal plane. Phase distribution 
is negative of phase distribution for z = 0, except for minor diffractive changes and boundary 
effect. 
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was 1221. Figure 1 shows the intensity distribution at z = 0, z = zf , and z = 22, . 
At the focus the intensity distribution is represented by only 14 points within 
the l/e radius of the Gaussian. However, this does not prevent the correct Gaussian 
shape from emerging at z = 22, . It will be noted that at z = 0 the on-axis intensity 
is 1.06 whereas at z = 22, it is 1.05. This slight drop in peak intensity is due to a 
small amount of diffractive spreading of the wave. The initial phase as a function 
of radius is shown in Fig. 3a. Phase distributions at z = z, = 15 cm, z = 16 cm, 
and z = 22, = 30 cm are shown in Figs. 3b, 3c, and 3d. The phase should be 
stationary, i.e., d#dr = 0, at z = zf . This is true over the portion of the beam 
containing nearly all of the energy. Figure 3c shows the phase at a position just 
1 cm beyond the focal plane. Note that the curvature of the phase has reversed, 
as it should, since the beam is now diverging. The behavior of the phase is correct 
in the portion of the beam containing most of the energy. Figure 3d shows the 
phase distribution at z = 22, = 30 cm. It is clearly the negative of the one for 
z = 0. A very slight perturbation in the phase is seen to occur near the boundary, 
which is due to the imposition of a boundary condition. In the present example 
the flex condition (4.6b) was employed. The calculated beam energy at the finish 
of the problem differed from the input energy only in the fifth significant figure. 
The difference is probably more of an indication of the accuracy of the trapezoidal 
integration employed in determining the energy than it is a reflection of non- 
conservation of energy. 
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